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A model-based control methodology for suppressing chaos for nonlinear systems is introduced. The pro-
posed methodology generates new periodic orbits or steady states, which are not the solutions of the free
system, using output feedback and state observers. The design uses the certainty equivalence principle to
construct a linear closed loop system that can follow desired outputs with zero steady state offsets via using a
pole-placement-like approach. The combined dynamics of both the controller and the state observer are care-
fully studied using the well-known Rössler system. The similarities and differences between the proposed
control technique and both the double-notch filter feedback and the time-delay autosynchronization are inves-
tigated. The effect of parameter uncertainties is studied and robustness of the proposed controller is analyzed.
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I. INTRODUCTION

Controlling the chaotic behavior of nonlinear systems has
been an active area of research for the past two decades �1�.
During the past 15 years, extensive studies on controlling
chaos have been reported in the literature. The Ott-Grebogi-
Yorke �OGY� method, developed in �2�, introduced a con-
troller that stabilizes unstable periodic orbits �UPOs� using
small feedback perturbations to an accessible parameter. The
control method relies on using an approximation for
Poincaré map of the system, thus requiring the use of
computer-based calculations, A/D and D/A converters, which
is a limiting factor when applied to fast system. Another
drawback is that noise can result in occasional bursts where
the trajectory of the system is far from the controlled peri-
odic orbit.

Adaptive control algorithms have been successfully ap-
plied to the control and synchronization of chaotic systems
�3–5�. The design procedure achieves the desired objectives
by constructing a suitable Lyapunov function and forcing its
derivative to be negative �semi� definite. However, the con-
struction of Lyapunov functions remains to be a difficult
task, and is usually considered a bottleneck in the design of
the control law.

Backstepping, a recursive design procedures, can extend
the applicability of Lyapunov-based deigns to nonlinear sys-
tems via considering some of the state variables as virtual
controls �6�. Backstepping designs are flexible and do not
force the designed system to appear linear. They also avoid
cancellation of, perhaps, useful nonlinearities and often in-
troduce additional nonlinear terms to improve the transient
performance �7�. Backstepping designs can have an over-
parametrized structure; thus, some of the controller param-
eters can be used to improve the transient performance of the
closed loop, while other parameters can be used to guarantee
the asymptotic stability �8,9�.

Double-notch filter feedback �DNFF�, a nonmodel-based
approach, is a simple, yet efficient, method for stabilizing
steady states of chaotic systems. This technique proved to be
very efficient for stabilizing fast dynamics because it can be
easily implemented using simple analog hardware �10�. The

parameters of the feedback controller are constants, but they
can be chosen to change chaotic motion into a desired peri-
odic motion or to suppress a selected frequency from the
power spectrum of the system.

Time-delay autosychronization �TDAS� is another
nonmodel-based approach that can achieve continuous con-
trol of chaotic nonlinear systems without the need of either
complicated computer processing or sophisticated hardware
�11�. The feasibility of the real-time applicability of TDAS
has been experimentally verified in a wide variety of fields
�12,13�. TDAS allows a noninvasive stabilization of UPOs as
the control signal vanishes when the target attractor is
reached. TDAS is especially superior when applied to sys-
tems that have very fast dynamics and low dimensions �14�.
Other variants of this control strategy are reported in the
literature to improve its performance and to overcome some
of its limitations �15–17�.

When developing model-based control systems, analysis
of physical systems usually involves two steps: developing
the mathematical models for the physical systems that accu-
rately represent their behavior and predicting the behavior of
these systems based on the derived models. When the true
parameters of the systems are unknown, the controller pa-
rameters are either estimated directly �direct scheme� or
computed by solving the same design equations with plant
parameters estimates �indirect scheme�. The resulting con-
troller is called a certainty equivalence controller �CEC�. The
certainty equivalence principle is extended to controllers that
use observers to have access to the unmeasured states. When
only one or few states are available for direct measurements,
the rest can be estimated using state observes that minimize
a certain cost function using both linear and nonlinear tech-
niques �18,19�. In this paper, a CEC controller is proposed
that uses a simple gradient descent algorithm to observe the
unmeasured states of the system. The dynamics of the state
observer are the same as that of the original model with the
addition of the auxiliary term that minimizes the error be-
tween the measured output and its estimate.

The rest of this paper is organized as follows. In Sec. II,
the mathematical structure of the model describing nonlinear
systems that are candidate to the proposed controller is in-
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troduced. Section III deals with a systematic analytical deri-
vation of the control law combined with the design of the
states observers. In Sec. IV, the Rössler system is used to
exemplify the application of the proposed controller. The dy-
namics of the Rössler system is investigated in Sec. IV A,
and then two cases are considered illustrating stabilizing the
system at a constant steady state �regulation�, or an unstable
periodic orbit �servomechanism� in Secs. IV B and IV C, re-
spectively. In addition, the advantages and limitations of the
proposed controller are highlighted via comparing its perfor-
mance against two well-known controllers, DNFF and TDAS
for the regulation and servomechanism cases respectively.
Section V discusses some of the robustness measures when
applying the proposed controller, and investigates the effect
of parameters uncertainties on the closed loop performance.
A conclusion is given in Sec. VI summarizing the analysis
and design of the proposed controller.

II. PROBLEM FORMULATION AND MODELING OF
NONLINEAR SYSTEMS

Consider a nonlinear model of the form

Ẋ = f�X,t,u�, X = �xi�, i = 1,2, . . . ,n, and y = xj ,

�1�

j � i ,

where X is the state vector, t is the time, u is the control
signal, n is the system order, and y is the output and the only
measurable state of the system. The dynamics of the nonlin-
ear system is further constrained to follow the structure illus-
trated in Eq. �2�:

ẋi = f i�X,t� = fL�i��X,t�, i = 1,2, . . . ,n − 1,

ẋn = fn�X,t� + u = fL�n��X,t� + fNL�X,t� + u , �2�

where fL�i�=� j=1
n �i,jxj , i=1,2 , . . . ,n is a linear function of the

states, � is constant vector, and the nonlinear dynamics of
the system are encapsulated in fNL�X , t�. Many real-world
applications fall into the structure of the nonlinear system
given by Eqs. �1� and �2�. Among them two-well potential
systems and Duffing oscillators �6,7,20�, Rössler- and
Lorenz-like systems �11,16�, Colpitts, Chua, and Toda oscil-
lators �3,21,22�, and others �23�. When analyzing the behav-
ior of such systems near equilibrium points, linearization
techniques can be used to estimate the corresponding
Lyapunov exponents as a quantitative measure of the system
response.

In the absence of the control signal u the system under-
goes a sequence of period doubling starting from a single
limit cycle until it becomes chaotic, if one �some� of its
parameters is �are� allowed to change monotonically. For
some sets of the system parameters, the output will always
experience chaos that is characterized by a number of UPOs
embedded within the chaotic motion, regardless of the initial
conditions. The model of the system is seen to be divided
into two parts, linear and nonlinear. The goal of this paper is

to stabilize the system response so that the output can settle
down to either a fixed steady state or a single periodic orbit.
This will be achieved by designing a model-based controller
that can estimate the nonlinear part of the model and hence
arrive at a new, completely linear, abstract level to model the
system. Using certainty equivalence principle, a pole-
placement controller is then designed to achieve the required
asymptotic response with a prescribed model-reference-like
behavior.

III. DESIGN OF THE CONTROL LAW

The proposed control law has two goals. The first one is
to cancel the nonlinearity via observing the immeasurable
states of the system, while the second goal is to implement a
linear full-state feedback to force the output of the system y
to follow a desired trajectory yd. The augmented dynamic
system describing the control signal and the state observer is
given by

u = − f̂NL�X̂,t� + KX̂ + k0yd,

ẋ̂i = f̂ i�X̂,t� + �i�y − ŷ�, i = 1,2, . . . ,n − 1,

ẋ̂n = f̂ n�X̂,t� + u + �n�y − ŷ� , �3�

where X̂ is the estimated state vector, K is a vector of de-
signed fixed parameters, k0 is used to eliminate the steady
state offset between both the actual output and its desired
value, and �= ��i� is a constant vector that is used to adjust
the convergence rate of the observed states. As depicted in
Eq. �3�, a simple gradient descent algorithm is used to imple-

ment the state observer where ŷ is the estimated output, f̂NL

is the estimate of the nonlinear function, and f̂ i is the esti-
mate of the system model given by Eqs. �1� and �2�. Figure 1
shows a block diagram realization of the closed loop systems
described by Eqs. �1�–�3�.

Using certainty equivalence principle and assuming that
the observed states of the system will asymptotically con-
verge to their true values, we have

FIG. 1. Closed loop block diagram of the proposed controller.
The dashed arrow indicates that the model structure and the control
signal are passed to the dynamics describing the observed states.
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�X̂ → X� ⇒ � f̂NL�X̂,t� → fNL�X,t�� ⇒ Ẋ = AX + Byd, �4�

where

A = �ai,j�

= �
�1,1 �1,2 ¯ �1,n−1 �1,n

�2,1 �2,2 ¯ �2,n−1 �2,n

] ] � ]

�n−1,1 �n−1,2 � �n−1,n

�n,1 + k1 �n,2 + k2 ¯ �n,n−1 + kn−1 �n,n + kn

	 ,

�5�

and

B = �bi� = �
0

0

]

]

k0

	 .

IV. CASE STUDY

During the study of nonlinear dynamics, such as chaos
and bifurcation, several benchmark models are used to ex-
emplify the technique used to control the system. These
benchmark models are always characterized by low dimen-
sions to simplify the analysis, validation and verification of
the proposed technique. The Rössler, Lorenz, Duffing oscil-
lator, Van der Pol oscillator, and Chua’s circuit are typical
examples of such models. Interestingly, these models can
always be cast in the form given by Eqs. �1� and �2�. In this
paper, the Rössler system is used as a case study to demon-
strate the analysis and control of chaos, for which the dy-
namic model is described by

ẋ1 = f1�x1,x2,x3,u� = − x2 − x3,

ẋ2 = f2�x1,x2,x3,u� = x1 + ax2,

ẋ3 = f3�x1,x2,x3,u� = − cx3 + �b + x1x3� + u , �6�

where X= �x1 ,x2 ,x3�T is the state vector, u is the input, y
=x2 is the output, a=0.2 and c=5.7 are deterministic param-
eters, and b is an uncertain parameter that is governed by the
following relationship:

bmin � b � bmax, �7�

where bmin=0.15 and bmax=0.25. Comparing Eq. �6� with
Eqs. �1� and �2�, the following relationships are established:
fL1=−x2−x3, fL2=x1+ax2, fL3=−cx3, and fNL=b+x1x3. The
nominal equilibrium points corresponding to ẋ1= ẋ2= ẋ3=u
=0 and b=0.2 are Xeq= �5.6930,−28.4649,28.4649�T and
�0.00702,−0.0351, +0.0351��T and the corresponding
Lyapunov exponents are �1
 ±5.4280i ,0.1930 and �2

0.0970±0.9952i ,−5.6870, respectively. The system will
exhibit chaos with a dominant UPO of 5.86 s approximately.

A. Design of the control law

With reference to Eq. �3�, the proposed control structure is

u = − �b + x̂1x̂3� + K�x̂1 x̂2 x̂3�T + k0yd, K = �k1 k2 k3� ,

ẋ̂1 = − x̂2 − x̂3 − �1�x̂2 − x2� ,

ẋ̂2 = x̂1 + ax̂2 − �2�x̂2 − x2� ,

ẋ̂3 = − cx̂3 + �b + x̂1x̂3� + u − �3�x̂2 − x2� , �8�

where yd is the desired output and x̂1, x̂2, and x̂3 are the
observed states corresponding to x1, x2, and x3, respectively.
It is assumed that only x2, the system output, is available for
measurement. The closed loop system is now given by

�Ẋ

X̂
˙ � = �AX AX̂

�X �X̂
��X

X̂
� + ��X

�X̂
� , �9�

where

AX = �0 − 1 − 1

1 a 0

0 0 − c
	, AX̂ = � 0 0 0

0 0 0

k1 k2 k3
	 ,

�X = �0 �1 0

0 �2 0

0 �3 0
	, �X̂ = � 0 − 1 − �1 − 1

1 a − �2 0

k1 k2 − �3 k3 − c
	 ,

�X = �0 0 kdyd + �x1x3 − x̂1x̂3��T, �X̂ = �0 0 kdyd�T.

�10�

Using the certainty equivalence principle and assuming that
the observed states will asymptotically converge to the cor-
rect system states, we have

Ẋ = AX + Byd, where A = �AX + AX̂� and B = �0 0 k0�T.

�11�

Equation �11� illustrates that, after all transients die out, the
performance of the closed loop system will asymptotically
mimic that of a desired output with a convergence rate that is
governed by the choice of the controller parameters ki and �i,
i=1, 2 and 3. Regarding steady state accuracy, k0 should be
adjusted properly to eliminate any offsets. Two cases are
considered to illustrate both regulation and servomechanism,
where the desired output is constant and a slowly time-
varying function, respectively.

B. Case I: Regulation, yd=ySS

Stabilizing the closed loop system to a constant steady
state ySS is now illustrated. The choice of the controller pa-
rameters is greatly simplified if the characteristic polynomial
T1�s� of the closed loop system is chosen to have the form

T1�s� = s3 + p1s2 + p2s + p3 = �s + p��s2 + 2�	ns + 	n
2� ,

�12�
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p 
 �	n,

where p, p1, p2, and p3 are positive constants characterizing
the desired linear third order model, and � and 	n are the
damping ratio and natural frequency of the dominant behav-
ior.

Thus matching Eq. �12� against the characteristic polyno-
mial of A leads to

k0 = − p3, k1 = p2 + ap1 + a2 − 1, �13�

k2 = p3 + ap2 + �a2 − 1�p1 + a�a2 − 2�, k3 = − p1 + �c − a� .

Figure 2 shows the response of the closed loop system for
yd=2, p=10, �=1, and 	n=1. The parameters of the states
observer were chosen to be �1=�2=�3=10, which are rela-
tively large positive numbers to guarantee fast convergence
of the observed states to their true values. Figure 3 illustrates
the complete response of the closed loop system.

A conflict will always exist between the desired conver-
gence rate and the control effort. If the controller is subject to
saturation, the maximum value of �= ��1�2�3� should be
constrained in order not to introduce saturation nonlinearity
into the closed loop system that might lead to undesirable
sluggish performance.

Stabilization of steady states can also be achieved using
two parallel notch filters. The DNFF damps all UPOs of the
uncontrolled system by suppressing their corresponding

power spectrum. A linear second order notch filter is given
by

TF�s� =
Y f�s�
Y�s�

=
kf�s2 + 	 f

2�

s2 +
	 f

Qf
s + 	 f

2

, �14�

where yf ,kf ,Qf ,	 f are output, gain, quality factor, and reso-
nance frequency in rad/s of the filter, respectively. Compar-
ing the order and number of tunable parameters of both con-
trollers reveals that the proposed model-based controller has
an order of three and needs six parameters �K and ��, while
the DNFF has an order of four and needs six parameters �two
sets of kf, Qf, and 	 f�.

The DNFF performance depends crucially on the reso-
nance frequencies and if chosen very close to the dominant
frequency of the uncontrolled system, stabilization will fail
�10�. In addition, for DNFF, steady state stabilization is only
possible if the real part of the Lyapunov exponent is nega-
tive. These two shortcomings of the DNFF greatly affect its
robustness and limit the scope of its applications. The pro-
posed model-based controller does not suffer from these two
problems, in addition, only the K vector needs to be analyti-
cally designed, as � is chosen empirically, implying that the
design effort is reduced and robustness is increased. The
DNFF is easily implemented in analog hardware and is, thus,
suitable for applications having fast dynamics. In contrast,

(a)

(b)

FIG. 2. The system’s output, in �a�, and control signal, in �b�, of
the closed loop system. The system is shown to reach a steady state
in less than five seconds. The proposed controller was switched on
at t=100 s.

(a)

(b)

FIG. 3. Complete response of the closed loop system, in �a�,
showing the observed states �solid lines� converging very rapidly to
the true states �dotted lines� of the system. The 3D phase plane, in
�b�, indicates that the desired operating point was reached with no
offset.
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the proposed model-based controller needs a digital-based
implementation to reconstruct the estimated dynamics, which
is a time-consuming process and is indeed a limiting factor
when applied to real-world applications. Finally, although
DNFF is a model-free design, extensive experimentation is
required to choose Qf and kf in contrast to the systematic
approach of choosing K of the proposed model-based con-
troller.

C. Case II: Servomechanism, yd=A0 sin„�0t…

In this case, the closed loop system will be stabilized to a
periodic orbit that does not necessarily correspond to one of
the UPOs embedded in the chaotic response of the uncon-
trolled system. The desired periodic orbit has amplitude of
A0 and a frequency of 	0. Using the same technique illus-
trated in the previous section, the new characteristic polyno-
mial, T2�s�, of the closed loop system is now given by

T2�s� = �s2 + 	0
2�T1�s� . �15�

Thus solving for k0 is straightforward as conventional linear
systems techniques can be utilized. Equation �16� illustrates
the necessary steps to guarantee arriving at the necessary
value of k0 that will produce an output with the required
amplitude A0:

Y�s� =
��s�
T1�s�

+
�1

�s + j	0�
+

�2

�s − j	0�
⇒ YSS�s� =

�1

�s + j	0�
+

�2

�s − j	0�
,

k0 =
− A0p3

�Re��1 + �2� + Im��1 + �2��2 + �Re��1 − �2� + Im��1 − �2��2
, �16�

where �, �1, and �2 are the residues of Y�s� and Re and Im
stands for the real and imaginary parts of the complex resi-
dues, respectively. Figure 4 shows k0 as a function of both A0
and 	0 of the desired periodic orbit where it is obvious that
when 	0 reduces to zero, the servomechanism case reduces
to the regulation case where A0=ySS.

Figure 5 illustrates the controlled response of the closed
loop system for the case where A0=2 and the desired period
is 10 s corresponding to 	0=0.628 rad/s and k0=−13.975.
The rest of the controller parameters are the same as the
regulation case. Extensive simulation results further prove
that the system will follow any desired periodic orbit starting
from any initial condition. The control signal is shown to
settle down to a periodic function with the same frequency as

that of the output. Figure 6 shows the complete response of
the closed loop system.

Stabilizing UPOs can also be achieved using TDAS that is
easily implemented without the exact model of either the
controlled system or complicated computer processing for
reconstruction of the underlying dynamics. For these two
practical advantages, this control method has been success-
fully applied to experimental chaotic systems in various
fields of research including electronic circuits, laser systems,
mechanical oscillators, and chemical systems �12,13�. Both
single and multiple TDAS provide a continuous linear con-
trol that is characterized by simple transfer functions. The
controller of a single TDAS has the form

(a)

(b)

FIG. 4. Choosing k0 for the servomechanism case. The 3D fig-
ure, in �a�, shows k0 as a function of the frequency and amplitude of
the desired periodic orbit, while the other figure, in �b�, is a cross
sectional cut of the 3D figure illustrating the interaction between the
desired periodic orbit frequency and the desired closed loop dynam-
ics in T1�s�. Notice the jump at f =0.159 Hz corresponding to 	n

=1 rad/s.
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u = k�y�t − � − y�t�� , �17�

where k is a constant gain and  is the period of the UPO to
be stabilized. The implementation of the controller is shown
to be very simple and shares, with the DNFF, the advantage
of being model-free and suitable for systems having fast dy-
namics. Using TDAS, the output converges to the desired
periodic orbit while having noninvasive control as the con-
trol signal vanishes after stabilization. This is because the
UPO survives the feedback, while the rest of the chaotic
dynamics are damped out �15–17,24�.

The convergence rate of the proposed controller is seen to
be more flexible, but the control signal is invasive in contrast
to that of the TDAS. Regarding the design effort, the TDAS
needs only one parameter to be tuned k while the proposed
controller needed six parameters K and �. One advantage of
the proposed controller over the TDAS is the ability to sta-
bilize the system to any periodic orbit, even if it does not
exist among the original UPOs of the uncontrolled system.
This is simply because the proposed controller cancels the
unwanted nonlinearity of the uncontrolled system, which is
the source of chaos, while the TDAS attempts to damp out
all UPOs except the desired one. In addition, traditional
TDAS controllers suffer from the so-called odd number con-
dition that limits their use. The odd number condition gives a
class of UPOs that cannot be stabilized by this control
method. To overcome this problem and improve the control-
ler performance, several variants of TDAS control method
were introduced �17,25�. The proposed controller, in this pa-

per, does not suffer from this problem and can be applied to
virtually all nonlinear systems having the model structure
depicted in Eqs. �1� and �2�. The systematic approach in
designing the controller parameters for the proposed model-
based controllers is an added advantage over the TDAS, as it
has been proven that it is very difficult to choose both k and
 �17,26�. Finally, controlling both the amplitude and fre-
quency of the desired periodic orbit �steady state� is much
easier and straightforward using the proposed controller than
both DNFF and TDAS.

V. ROBUSTNESS ANALYSIS OF THE PROPOSED
CONTROLLER

Addressing uncertainties and their effect on the closed-
loop performance has been an active area of research that
often led to the design of tracking controllers with the pur-
pose of minimizing the effect of these uncertainties on the
output. Varieties of techniques have been developed such as
adaptive nonlinear control �27�, nonlinear robust control us-
ing Lyapunov-based techniques �28�, and model predictive
control �29�. Intelligent control methods, based on artificial
neural networks and fuzziness, are also found in the literature
that rely on black-box modeling in a attempt to capture the
nonlinear behavior of the system in terms of look-up tables
and/or complex interconnections �30�. State feedback con-
trollers are sometimes not suited for practical applications, as
some of the states might not be available for direct measure-

(a)

(b)

FIG. 5. Output, in �a�, and control signal, in �b�, of the closed
loop system. The response of the system is seen to converge rapidly
to the desired periodic orbit with the desired amplitude.

(a)

(b)

FIG. 6. Complete response of the closed loop system. The con-
vergence rate, in �a�, is very fast and almost identical to the results
of the regulation case in Fig. 3. The 3D phase plane, in �b�, further
illustrates that the desired periodic orbit was reached with no offset.
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ments. Major contributions to overcome such difficulties are
reported that use, some way or another, a controller-observer
combination �19�.

In the previous section, it was highlighted that the pro-
posed controller is model-based which requires exact knowl-
edge of both the states and the parameters of the system to be
controlled. Despite the simplicity of the observer designed to
reconstruct the immeasurable states of the system, it proved
to be very efficient, with an adjustable convergence rate that
can be easily tuned to guarantee satisfactory performance
while meeting any constraints on the maximum control ef-
fort. The proposed controller assumes having a deterministic
form for the model of the system to be controlled, which
might not always be true. In this section, effect of parameter
uncertainties is investigated by assuming that one of the sys-
tem parameters, namely, b, is allowed to change within a
certain range as depicted in Eq. �7�. Investigating the effect
of b on the controller design should be preceded by examin-
ing its effect on the equilibrium points and UPOs of the
uncontrolled system. Figures 7 and 8 illustrates how the
change in the uncertain parameter b is reflected on the sys-
tem behavior. As shown, for a change of ±25% in b, the
period of the dominant UPO changed only ±0.057%. This
small change is very small to affect the closed loop of the
controlled system. The control signal is now given by

u = − �b̄ + x̂1x̂3� + K�x̂1 x̂2 x̂3 �T + k0yd, �18�

where b̄=0.2 is the nominal value of the uncertain parameter
b. When comparing Eq. �18� to Eq. �7�, it is recognized that
the closed loop system will suffer steady state offsets.

To quantitatively investigate the effect of the parameter
uncertainty on the stability and performance of the closed
loop system, the augmented controller-observer dynamics
are given in Eq. �19�, which should be compared to the origi-
nal dynamics given in Eqs. �9� and �10�.

�
ẋ1

ẋ2

ẋ3

ẋ̂1

ẋ̂2

ẋ̂3

	 = �
0 − 1 − 1 0 0 0

1 a 0 0 0 0

0 0 − c k1 k2 k3

0 �1 0 0 − 1 − �1 − 1

0 �2 0 1 a − �2 0

0 �3 0 k1 k2 − �3 k3 − c

	�
x1

x2

x3

x̂1

x̂2

x̂3

	
+ �

0

0

kdyd + �b − b̄� + �x1x3 − x̂1x̂3�
0

0

kdyd

	 �19�

Table I summarizes the statistics governing the closed loop

(a)

(b)

FIG. 7. Equilibrium points as a function of b. The first equilib-
rium point, in �a�, has a maximum change of only ±0.031%, which
is very small and can be practically ignored. The second equilib-
rium point, in �b�, has a maximum change of ±25%, which is the
same as the maximum change in b. Thus, the second equilibrium
point is very sensitive to changes in b.

(a)

(b)

FIG. 8. The real part of the maximum/minimum Lyapunov ex-
ponents, in �a�, as a function of b. The figure in �b� illustrates the
effect of b on the dominant period of the Rössler system. It is
demonstrated that a change in of b of ±25% resulted in a maximum
change of ±0.032%, ±0.057%, and ±0.74% in �max, �min, and ,
respectively.
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response for the regulation and servomechanism cases, illus-
trating the effect of using the certainty equivalence model-
based controller while the uncertain parameter is experienc-
ing the maximum allowable change.

Thus, the closed loop system will experience a negligible
shift in its equilibrium point while retaining its original
stable operation. To improve the robustness of the system,
the uncertain parameters should be estimated. A number of
approaches can be used to accomplish such task, e.g., using
adaptive techniques and synchronization methods �28,31,32�.

VI. SUMMARY AND CONCLUSION

Designing model-based controllers for nonlinear chaotic
systems was investigated. The unknown system states were
observed and the controller parameters were adjusted using
the certainty equivalence principle. The simple gradient de-
scent method was used to force the observed states to con-
verge to their true values using a single measurable state �the
output�. Careful tuning of the controller gains and observer
parameters resulted in a stable and satisfactory response as

illustrated by the simulations. The original system and the
observer had equivalent structures, thus removing any con-
flict between the existence of a nonzero control signal in the
feedback closed-loop system that might interact with the ob-
server dynamics. The controller gains were systematically
calculated using a pole-placement-like approach and the re-
sponse followed closely the desired trajectory. When com-
pared to both DNFF and TDAS control methods, the
proposed controller proved to be superior in terms
of the experimentation time needed to tune the controller
parameters. In addition, the proposed controller shares the
advantage of using a single time series for implementing
thefeedback loop and has an order that falls between the
DNFF and TDAS. Robustness analysis revealed that accom-
modating parameters uncertainty requires additional post-
design effort to guarantee satisfactory performance of the
closed loop system. Generalizing the controller application
remains a challenge as nonlinear systems fall into many dif-
ferent classes with varying levels of dimensionality and de-
grees of complexity.
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